Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries

نویسندگان

  • Zhenhua Sun
  • Jingqi Zhang
  • Lichang Yin
  • Guangjian Hu
  • Ruopian Fang
  • Hui-Ming Cheng
  • Feng Li
چکیده

Although the rechargeable lithium-sulfur battery is an advanced energy storage system, its practical implementation has been impeded by many issues, in particular the shuttle effect causing rapid capacity fade and low Coulombic efficiency. Herein, we report a conductive porous vanadium nitride nanoribbon/graphene composite accommodating the catholyte as the cathode of a lithium-sulfur battery. The vanadium nitride/graphene composite provides strong anchoring for polysulfides and fast polysulfide conversion. The anchoring effect of vanadium nitride is confirmed by experimental and theoretical results. Owing to the high conductivity of vanadium nitride, the composite cathode exhibits lower polarization and faster redox reaction kinetics than a reduced graphene oxide cathode, showing good rate and cycling performances. The initial capacity reaches 1,471 mAh g-1 and the capacity after 100 cycles is 1,252 mAh g-1 at 0.2 C, a loss of only 15%, offering a potential for use in high energy lithium-sulfur batteries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-Dimensionally Hierarchical Graphene Based Aerogel Encapsulated Sulfur as Cathode for Lithium/Sulfur Batteries

A simple and effective method was developed to obtain the electrode for lithium/sulfur (Li/S) batteries with high specific capacity and cycling durability via adopting an interconnected sulfur/activated carbon/graphene (reduced graphene oxide) aerogel (S/AC/GA) cathode architecture. The AC/GA composite with a well-defined interconnected conductive network was prepared by a reduction-induced sel...

متن کامل

MnO2–graphene nanosheets wrapped mesoporous carbon/sulfur composite for lithium–sulfur batteries

MnO2-graphene nanosheets wrapped mesoporous carbon/sulfur (MGN@MC/S) composite is successfully synthesized derived from metal-organic frameworks and investigated as cathode for lithium-ion batteries. Used as cathode, MGN@MC/S composite possesses electronic conductivity network for redox electron transfer and strong chemical bonding to lithium polysulfides, which enables low capacity loss to be ...

متن کامل

Enhanced electrochemical performance of a crosslinked polyaniline-coated graphene oxide-sulfur composite for rechargeable lithium-sulfur batteries

Due to the extraordinarily high theoretical capacity of sulfur (1675 mAh g 1), the lithiumesulfur (LieS) battery has been considered a promising candidate for future high-energy battery applications. LieS batteries, however, have suffered from limited cycle lives, mainly due to the formation of soluble polysulfides, which prevent the practical application of this attractive technology. The enca...

متن کامل

Three-Dimensional Sulfur/Graphene Multifunctional Hybrid Sponges for Lithium-Sulfur Batteries with Large Areal Mass Loading

In this communication, we introduce the concept of three dimensional (3D) battery electrodes to enhance the capacity per footprint area for lithium-sulfur battery. In such a battery, 3D electrode of sulfur embedded into porous graphene sponges (S-GS) was directly used as the cathode with large areal mass loading of sulfur (12 mg cm(-2)), approximately 6-12 times larger than that of most reports...

متن کامل

Biomass-Derived Oxygen and Nitrogen Co-Doped Porous Carbon with Hierarchical Architecture as Sulfur Hosts for High-Performance Lithium/Sulfur Batteries

In this work, a facile strategy to synthesize oxygen and nitrogen co-doped porous carbon (ONPC) is reported by one-step pyrolysis of waste coffee grounds. As-prepared ONPC possesses highly rich micro/mesopores as well as abundant oxygen and nitrogen co-doping, which is applied to sulfur hosts as lithium/sulfur batteries' appropriate cathodes. In battery testing, the sulfur/oxygen and nitrogen c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017